Файловый менеджер - Редактировать - /usr/src/linux-headers-5.4.0-200/arch/sparc/include/asm/io_64.h
Назад
/* SPDX-License-Identifier: GPL-2.0 */ #ifndef __SPARC64_IO_H #define __SPARC64_IO_H #include <linux/kernel.h> #include <linux/compiler.h> #include <linux/types.h> #include <asm/page.h> /* IO address mapping routines need this */ #include <asm/asi.h> #include <asm-generic/pci_iomap.h> /* BIO layer definitions. */ extern unsigned long kern_base, kern_size; /* __raw_{read,write}{b,w,l,q} uses direct access. * Access the memory as big endian bypassing the cache * by using ASI_PHYS_BYPASS_EC_E */ #define __raw_readb __raw_readb static inline u8 __raw_readb(const volatile void __iomem *addr) { u8 ret; __asm__ __volatile__("lduba\t[%1] %2, %0\t/* pci_raw_readb */" : "=r" (ret) : "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E)); return ret; } #define __raw_readw __raw_readw static inline u16 __raw_readw(const volatile void __iomem *addr) { u16 ret; __asm__ __volatile__("lduha\t[%1] %2, %0\t/* pci_raw_readw */" : "=r" (ret) : "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E)); return ret; } #define __raw_readl __raw_readl static inline u32 __raw_readl(const volatile void __iomem *addr) { u32 ret; __asm__ __volatile__("lduwa\t[%1] %2, %0\t/* pci_raw_readl */" : "=r" (ret) : "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E)); return ret; } #define __raw_readq __raw_readq static inline u64 __raw_readq(const volatile void __iomem *addr) { u64 ret; __asm__ __volatile__("ldxa\t[%1] %2, %0\t/* pci_raw_readq */" : "=r" (ret) : "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E)); return ret; } #define __raw_writeb __raw_writeb static inline void __raw_writeb(u8 b, const volatile void __iomem *addr) { __asm__ __volatile__("stba\t%r0, [%1] %2\t/* pci_raw_writeb */" : /* no outputs */ : "Jr" (b), "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E)); } #define __raw_writew __raw_writew static inline void __raw_writew(u16 w, const volatile void __iomem *addr) { __asm__ __volatile__("stha\t%r0, [%1] %2\t/* pci_raw_writew */" : /* no outputs */ : "Jr" (w), "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E)); } #define __raw_writel __raw_writel static inline void __raw_writel(u32 l, const volatile void __iomem *addr) { __asm__ __volatile__("stwa\t%r0, [%1] %2\t/* pci_raw_writel */" : /* no outputs */ : "Jr" (l), "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E)); } #define __raw_writeq __raw_writeq static inline void __raw_writeq(u64 q, const volatile void __iomem *addr) { __asm__ __volatile__("stxa\t%r0, [%1] %2\t/* pci_raw_writeq */" : /* no outputs */ : "Jr" (q), "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E)); } /* Memory functions, same as I/O accesses on Ultra. * Access memory as little endian bypassing * the cache by using ASI_PHYS_BYPASS_EC_E_L */ #define readb readb #define readb_relaxed readb static inline u8 readb(const volatile void __iomem *addr) { u8 ret; __asm__ __volatile__("lduba\t[%1] %2, %0\t/* pci_readb */" : "=r" (ret) : "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L) : "memory"); return ret; } #define readw readw #define readw_relaxed readw static inline u16 readw(const volatile void __iomem *addr) { u16 ret; __asm__ __volatile__("lduha\t[%1] %2, %0\t/* pci_readw */" : "=r" (ret) : "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L) : "memory"); return ret; } #define readl readl #define readl_relaxed readl static inline u32 readl(const volatile void __iomem *addr) { u32 ret; __asm__ __volatile__("lduwa\t[%1] %2, %0\t/* pci_readl */" : "=r" (ret) : "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L) : "memory"); return ret; } #define readq readq #define readq_relaxed readq static inline u64 readq(const volatile void __iomem *addr) { u64 ret; __asm__ __volatile__("ldxa\t[%1] %2, %0\t/* pci_readq */" : "=r" (ret) : "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L) : "memory"); return ret; } #define writeb writeb #define writeb_relaxed writeb static inline void writeb(u8 b, volatile void __iomem *addr) { __asm__ __volatile__("stba\t%r0, [%1] %2\t/* pci_writeb */" : /* no outputs */ : "Jr" (b), "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L) : "memory"); } #define writew writew #define writew_relaxed writew static inline void writew(u16 w, volatile void __iomem *addr) { __asm__ __volatile__("stha\t%r0, [%1] %2\t/* pci_writew */" : /* no outputs */ : "Jr" (w), "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L) : "memory"); } #define writel writel #define writel_relaxed writel static inline void writel(u32 l, volatile void __iomem *addr) { __asm__ __volatile__("stwa\t%r0, [%1] %2\t/* pci_writel */" : /* no outputs */ : "Jr" (l), "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L) : "memory"); } #define writeq writeq #define writeq_relaxed writeq static inline void writeq(u64 q, volatile void __iomem *addr) { __asm__ __volatile__("stxa\t%r0, [%1] %2\t/* pci_writeq */" : /* no outputs */ : "Jr" (q), "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L) : "memory"); } #define inb inb static inline u8 inb(unsigned long addr) { return readb((volatile void __iomem *)addr); } #define inw inw static inline u16 inw(unsigned long addr) { return readw((volatile void __iomem *)addr); } #define inl inl static inline u32 inl(unsigned long addr) { return readl((volatile void __iomem *)addr); } #define outb outb static inline void outb(u8 b, unsigned long addr) { writeb(b, (volatile void __iomem *)addr); } #define outw outw static inline void outw(u16 w, unsigned long addr) { writew(w, (volatile void __iomem *)addr); } #define outl outl static inline void outl(u32 l, unsigned long addr) { writel(l, (volatile void __iomem *)addr); } #define inb_p(__addr) inb(__addr) #define outb_p(__b, __addr) outb(__b, __addr) #define inw_p(__addr) inw(__addr) #define outw_p(__w, __addr) outw(__w, __addr) #define inl_p(__addr) inl(__addr) #define outl_p(__l, __addr) outl(__l, __addr) void outsb(unsigned long, const void *, unsigned long); void outsw(unsigned long, const void *, unsigned long); void outsl(unsigned long, const void *, unsigned long); void insb(unsigned long, void *, unsigned long); void insw(unsigned long, void *, unsigned long); void insl(unsigned long, void *, unsigned long); static inline void readsb(void __iomem *port, void *buf, unsigned long count) { insb((unsigned long __force)port, buf, count); } static inline void readsw(void __iomem *port, void *buf, unsigned long count) { insw((unsigned long __force)port, buf, count); } static inline void readsl(void __iomem *port, void *buf, unsigned long count) { insl((unsigned long __force)port, buf, count); } static inline void writesb(void __iomem *port, const void *buf, unsigned long count) { outsb((unsigned long __force)port, buf, count); } static inline void writesw(void __iomem *port, const void *buf, unsigned long count) { outsw((unsigned long __force)port, buf, count); } static inline void writesl(void __iomem *port, const void *buf, unsigned long count) { outsl((unsigned long __force)port, buf, count); } #define ioread8_rep(p,d,l) readsb(p,d,l) #define ioread16_rep(p,d,l) readsw(p,d,l) #define ioread32_rep(p,d,l) readsl(p,d,l) #define iowrite8_rep(p,d,l) writesb(p,d,l) #define iowrite16_rep(p,d,l) writesw(p,d,l) #define iowrite32_rep(p,d,l) writesl(p,d,l) /* Valid I/O Space regions are anywhere, because each PCI bus supported * can live in an arbitrary area of the physical address range. */ #define IO_SPACE_LIMIT 0xffffffffffffffffUL /* Now, SBUS variants, only difference from PCI is that we do * not use little-endian ASIs. */ static inline u8 sbus_readb(const volatile void __iomem *addr) { return __raw_readb(addr); } static inline u16 sbus_readw(const volatile void __iomem *addr) { return __raw_readw(addr); } static inline u32 sbus_readl(const volatile void __iomem *addr) { return __raw_readl(addr); } static inline u64 sbus_readq(const volatile void __iomem *addr) { return __raw_readq(addr); } static inline void sbus_writeb(u8 b, volatile void __iomem *addr) { __raw_writeb(b, addr); } static inline void sbus_writew(u16 w, volatile void __iomem *addr) { __raw_writew(w, addr); } static inline void sbus_writel(u32 l, volatile void __iomem *addr) { __raw_writel(l, addr); } static inline void sbus_writeq(u64 q, volatile void __iomem *addr) { __raw_writeq(q, addr); } static inline void sbus_memset_io(volatile void __iomem *dst, int c, __kernel_size_t n) { while(n--) { sbus_writeb(c, dst); dst++; } } static inline void memset_io(volatile void __iomem *dst, int c, __kernel_size_t n) { volatile void __iomem *d = dst; while (n--) { writeb(c, d); d++; } } static inline void sbus_memcpy_fromio(void *dst, const volatile void __iomem *src, __kernel_size_t n) { char *d = dst; while (n--) { char tmp = sbus_readb(src); *d++ = tmp; src++; } } static inline void memcpy_fromio(void *dst, const volatile void __iomem *src, __kernel_size_t n) { char *d = dst; while (n--) { char tmp = readb(src); *d++ = tmp; src++; } } static inline void sbus_memcpy_toio(volatile void __iomem *dst, const void *src, __kernel_size_t n) { const char *s = src; volatile void __iomem *d = dst; while (n--) { char tmp = *s++; sbus_writeb(tmp, d); d++; } } static inline void memcpy_toio(volatile void __iomem *dst, const void *src, __kernel_size_t n) { const char *s = src; volatile void __iomem *d = dst; while (n--) { char tmp = *s++; writeb(tmp, d); d++; } } #ifdef __KERNEL__ /* On sparc64 we have the whole physical IO address space accessible * using physically addressed loads and stores, so this does nothing. */ static inline void __iomem *ioremap(unsigned long offset, unsigned long size) { return (void __iomem *)offset; } #define ioremap_nocache(X,Y) ioremap((X),(Y)) #define ioremap_uc(X,Y) ioremap((X),(Y)) #define ioremap_wc(X,Y) ioremap((X),(Y)) #define ioremap_wt(X,Y) ioremap((X),(Y)) static inline void iounmap(volatile void __iomem *addr) { } #define ioread8 readb #define ioread16 readw #define ioread16be __raw_readw #define ioread32 readl #define ioread32be __raw_readl #define iowrite8 writeb #define iowrite16 writew #define iowrite16be __raw_writew #define iowrite32 writel #define iowrite32be __raw_writel /* Create a virtual mapping cookie for an IO port range */ void __iomem *ioport_map(unsigned long port, unsigned int nr); void ioport_unmap(void __iomem *); /* Create a virtual mapping cookie for a PCI BAR (memory or IO) */ struct pci_dev; void pci_iounmap(struct pci_dev *dev, void __iomem *); static inline int sbus_can_dma_64bit(void) { return 1; } static inline int sbus_can_burst64(void) { return 1; } struct device; void sbus_set_sbus64(struct device *, int); /* * Convert a physical pointer to a virtual kernel pointer for /dev/mem * access */ #define xlate_dev_mem_ptr(p) __va(p) /* * Convert a virtual cached pointer to an uncached pointer */ #define xlate_dev_kmem_ptr(p) p #endif #endif /* !(__SPARC64_IO_H) */
| ver. 1.4 |
Github
|
.
| PHP 7.4.3-4ubuntu2.24 | Генерация страницы: 0 |
proxy
|
phpinfo
|
Настройка