Файловый менеджер - Редактировать - /usr/src/linux-headers-5.4.0-200/include/linux/slab.h
Назад
/* SPDX-License-Identifier: GPL-2.0 */ /* * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk). * * (C) SGI 2006, Christoph Lameter * Cleaned up and restructured to ease the addition of alternative * implementations of SLAB allocators. * (C) Linux Foundation 2008-2013 * Unified interface for all slab allocators */ #ifndef _LINUX_SLAB_H #define _LINUX_SLAB_H #include <linux/gfp.h> #include <linux/overflow.h> #include <linux/types.h> #include <linux/workqueue.h> #include <linux/percpu-refcount.h> /* * Flags to pass to kmem_cache_create(). * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set. */ /* DEBUG: Perform (expensive) checks on alloc/free */ #define SLAB_CONSISTENCY_CHECKS ((slab_flags_t __force)0x00000100U) /* DEBUG: Red zone objs in a cache */ #define SLAB_RED_ZONE ((slab_flags_t __force)0x00000400U) /* DEBUG: Poison objects */ #define SLAB_POISON ((slab_flags_t __force)0x00000800U) /* Align objs on cache lines */ #define SLAB_HWCACHE_ALIGN ((slab_flags_t __force)0x00002000U) /* Use GFP_DMA memory */ #define SLAB_CACHE_DMA ((slab_flags_t __force)0x00004000U) /* Use GFP_DMA32 memory */ #define SLAB_CACHE_DMA32 ((slab_flags_t __force)0x00008000U) /* DEBUG: Store the last owner for bug hunting */ #define SLAB_STORE_USER ((slab_flags_t __force)0x00010000U) /* Panic if kmem_cache_create() fails */ #define SLAB_PANIC ((slab_flags_t __force)0x00040000U) /* * SLAB_TYPESAFE_BY_RCU - **WARNING** READ THIS! * * This delays freeing the SLAB page by a grace period, it does _NOT_ * delay object freeing. This means that if you do kmem_cache_free() * that memory location is free to be reused at any time. Thus it may * be possible to see another object there in the same RCU grace period. * * This feature only ensures the memory location backing the object * stays valid, the trick to using this is relying on an independent * object validation pass. Something like: * * rcu_read_lock() * again: * obj = lockless_lookup(key); * if (obj) { * if (!try_get_ref(obj)) // might fail for free objects * goto again; * * if (obj->key != key) { // not the object we expected * put_ref(obj); * goto again; * } * } * rcu_read_unlock(); * * This is useful if we need to approach a kernel structure obliquely, * from its address obtained without the usual locking. We can lock * the structure to stabilize it and check it's still at the given address, * only if we can be sure that the memory has not been meanwhile reused * for some other kind of object (which our subsystem's lock might corrupt). * * rcu_read_lock before reading the address, then rcu_read_unlock after * taking the spinlock within the structure expected at that address. * * Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU. */ /* Defer freeing slabs to RCU */ #define SLAB_TYPESAFE_BY_RCU ((slab_flags_t __force)0x00080000U) /* Spread some memory over cpuset */ #define SLAB_MEM_SPREAD ((slab_flags_t __force)0x00100000U) /* Trace allocations and frees */ #define SLAB_TRACE ((slab_flags_t __force)0x00200000U) /* Flag to prevent checks on free */ #ifdef CONFIG_DEBUG_OBJECTS # define SLAB_DEBUG_OBJECTS ((slab_flags_t __force)0x00400000U) #else # define SLAB_DEBUG_OBJECTS 0 #endif /* Avoid kmemleak tracing */ #define SLAB_NOLEAKTRACE ((slab_flags_t __force)0x00800000U) /* Fault injection mark */ #ifdef CONFIG_FAILSLAB # define SLAB_FAILSLAB ((slab_flags_t __force)0x02000000U) #else # define SLAB_FAILSLAB 0 #endif /* Account to memcg */ #ifdef CONFIG_MEMCG_KMEM # define SLAB_ACCOUNT ((slab_flags_t __force)0x04000000U) #else # define SLAB_ACCOUNT 0 #endif #ifdef CONFIG_KASAN #define SLAB_KASAN ((slab_flags_t __force)0x08000000U) #else #define SLAB_KASAN 0 #endif /* The following flags affect the page allocator grouping pages by mobility */ /* Objects are reclaimable */ #define SLAB_RECLAIM_ACCOUNT ((slab_flags_t __force)0x00020000U) #define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */ /* Slab deactivation flag */ #define SLAB_DEACTIVATED ((slab_flags_t __force)0x10000000U) /* * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests. * * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault. * * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can. * Both make kfree a no-op. */ #define ZERO_SIZE_PTR ((void *)16) #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \ (unsigned long)ZERO_SIZE_PTR) #include <linux/kasan.h> struct mem_cgroup; /* * struct kmem_cache related prototypes */ void __init kmem_cache_init(void); bool slab_is_available(void); extern bool usercopy_fallback; struct kmem_cache *kmem_cache_create(const char *name, unsigned int size, unsigned int align, slab_flags_t flags, void (*ctor)(void *)); struct kmem_cache *kmem_cache_create_usercopy(const char *name, unsigned int size, unsigned int align, slab_flags_t flags, unsigned int useroffset, unsigned int usersize, void (*ctor)(void *)); void kmem_cache_destroy(struct kmem_cache *); int kmem_cache_shrink(struct kmem_cache *); void memcg_create_kmem_cache(struct mem_cgroup *, struct kmem_cache *); void memcg_deactivate_kmem_caches(struct mem_cgroup *, struct mem_cgroup *); /* * Please use this macro to create slab caches. Simply specify the * name of the structure and maybe some flags that are listed above. * * The alignment of the struct determines object alignment. If you * f.e. add ____cacheline_aligned_in_smp to the struct declaration * then the objects will be properly aligned in SMP configurations. */ #define KMEM_CACHE(__struct, __flags) \ kmem_cache_create(#__struct, sizeof(struct __struct), \ __alignof__(struct __struct), (__flags), NULL) /* * To whitelist a single field for copying to/from usercopy, use this * macro instead for KMEM_CACHE() above. */ #define KMEM_CACHE_USERCOPY(__struct, __flags, __field) \ kmem_cache_create_usercopy(#__struct, \ sizeof(struct __struct), \ __alignof__(struct __struct), (__flags), \ offsetof(struct __struct, __field), \ sizeof_field(struct __struct, __field), NULL) /* * Common kmalloc functions provided by all allocators */ void * __must_check __krealloc(const void *, size_t, gfp_t); void * __must_check krealloc(const void *, size_t, gfp_t); void kfree(const void *); void kzfree(const void *); size_t __ksize(const void *); size_t ksize(const void *); #ifdef CONFIG_HAVE_HARDENED_USERCOPY_ALLOCATOR void __check_heap_object(const void *ptr, unsigned long n, struct page *page, bool to_user); #else static inline void __check_heap_object(const void *ptr, unsigned long n, struct page *page, bool to_user) { } #endif /* * Some archs want to perform DMA into kmalloc caches and need a guaranteed * alignment larger than the alignment of a 64-bit integer. * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that. */ #if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8 #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN #define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN #define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN) #else #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) #endif /* * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment. * Intended for arches that get misalignment faults even for 64 bit integer * aligned buffers. */ #ifndef ARCH_SLAB_MINALIGN #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long) #endif /* * kmalloc and friends return ARCH_KMALLOC_MINALIGN aligned * pointers. kmem_cache_alloc and friends return ARCH_SLAB_MINALIGN * aligned pointers. */ #define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN) #define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN) #define __assume_page_alignment __assume_aligned(PAGE_SIZE) /* * Kmalloc array related definitions */ #ifdef CONFIG_SLAB /* * The largest kmalloc size supported by the SLAB allocators is * 32 megabyte (2^25) or the maximum allocatable page order if that is * less than 32 MB. * * WARNING: Its not easy to increase this value since the allocators have * to do various tricks to work around compiler limitations in order to * ensure proper constant folding. */ #define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \ (MAX_ORDER + PAGE_SHIFT - 1) : 25) #define KMALLOC_SHIFT_MAX KMALLOC_SHIFT_HIGH #ifndef KMALLOC_SHIFT_LOW #define KMALLOC_SHIFT_LOW 5 #endif #endif #ifdef CONFIG_SLUB /* * SLUB directly allocates requests fitting in to an order-1 page * (PAGE_SIZE*2). Larger requests are passed to the page allocator. */ #define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1) #define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT - 1) #ifndef KMALLOC_SHIFT_LOW #define KMALLOC_SHIFT_LOW 3 #endif #endif #ifdef CONFIG_SLOB /* * SLOB passes all requests larger than one page to the page allocator. * No kmalloc array is necessary since objects of different sizes can * be allocated from the same page. */ #define KMALLOC_SHIFT_HIGH PAGE_SHIFT #define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT - 1) #ifndef KMALLOC_SHIFT_LOW #define KMALLOC_SHIFT_LOW 3 #endif #endif /* Maximum allocatable size */ #define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX) /* Maximum size for which we actually use a slab cache */ #define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH) /* Maximum order allocatable via the slab allocagtor */ #define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT) /* * Kmalloc subsystem. */ #ifndef KMALLOC_MIN_SIZE #define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW) #endif /* * This restriction comes from byte sized index implementation. * Page size is normally 2^12 bytes and, in this case, if we want to use * byte sized index which can represent 2^8 entries, the size of the object * should be equal or greater to 2^12 / 2^8 = 2^4 = 16. * If minimum size of kmalloc is less than 16, we use it as minimum object * size and give up to use byte sized index. */ #define SLAB_OBJ_MIN_SIZE (KMALLOC_MIN_SIZE < 16 ? \ (KMALLOC_MIN_SIZE) : 16) /* * Whenever changing this, take care of that kmalloc_type() and * create_kmalloc_caches() still work as intended. */ enum kmalloc_cache_type { KMALLOC_NORMAL = 0, KMALLOC_RECLAIM, #ifdef CONFIG_ZONE_DMA KMALLOC_DMA, #endif NR_KMALLOC_TYPES }; #ifndef CONFIG_SLOB extern struct kmem_cache * kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1]; static __always_inline enum kmalloc_cache_type kmalloc_type(gfp_t flags) { #ifdef CONFIG_ZONE_DMA /* * The most common case is KMALLOC_NORMAL, so test for it * with a single branch for both flags. */ if (likely((flags & (__GFP_DMA | __GFP_RECLAIMABLE)) == 0)) return KMALLOC_NORMAL; /* * At least one of the flags has to be set. If both are, __GFP_DMA * is more important. */ return flags & __GFP_DMA ? KMALLOC_DMA : KMALLOC_RECLAIM; #else return flags & __GFP_RECLAIMABLE ? KMALLOC_RECLAIM : KMALLOC_NORMAL; #endif } /* * Figure out which kmalloc slab an allocation of a certain size * belongs to. * 0 = zero alloc * 1 = 65 .. 96 bytes * 2 = 129 .. 192 bytes * n = 2^(n-1)+1 .. 2^n */ static __always_inline unsigned int kmalloc_index(size_t size) { if (!size) return 0; if (size <= KMALLOC_MIN_SIZE) return KMALLOC_SHIFT_LOW; if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96) return 1; if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192) return 2; if (size <= 8) return 3; if (size <= 16) return 4; if (size <= 32) return 5; if (size <= 64) return 6; if (size <= 128) return 7; if (size <= 256) return 8; if (size <= 512) return 9; if (size <= 1024) return 10; if (size <= 2 * 1024) return 11; if (size <= 4 * 1024) return 12; if (size <= 8 * 1024) return 13; if (size <= 16 * 1024) return 14; if (size <= 32 * 1024) return 15; if (size <= 64 * 1024) return 16; if (size <= 128 * 1024) return 17; if (size <= 256 * 1024) return 18; if (size <= 512 * 1024) return 19; if (size <= 1024 * 1024) return 20; if (size <= 2 * 1024 * 1024) return 21; if (size <= 4 * 1024 * 1024) return 22; if (size <= 8 * 1024 * 1024) return 23; if (size <= 16 * 1024 * 1024) return 24; if (size <= 32 * 1024 * 1024) return 25; if (size <= 64 * 1024 * 1024) return 26; BUG(); /* Will never be reached. Needed because the compiler may complain */ return -1; } #endif /* !CONFIG_SLOB */ void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment __malloc; void *kmem_cache_alloc(struct kmem_cache *, gfp_t flags) __assume_slab_alignment __malloc; void kmem_cache_free(struct kmem_cache *, void *); /* * Bulk allocation and freeing operations. These are accelerated in an * allocator specific way to avoid taking locks repeatedly or building * metadata structures unnecessarily. * * Note that interrupts must be enabled when calling these functions. */ void kmem_cache_free_bulk(struct kmem_cache *, size_t, void **); int kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **); /* * Caller must not use kfree_bulk() on memory not originally allocated * by kmalloc(), because the SLOB allocator cannot handle this. */ static __always_inline void kfree_bulk(size_t size, void **p) { kmem_cache_free_bulk(NULL, size, p); } #ifdef CONFIG_NUMA void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment __malloc; void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node) __assume_slab_alignment __malloc; #else static __always_inline void *__kmalloc_node(size_t size, gfp_t flags, int node) { return __kmalloc(size, flags); } static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node) { return kmem_cache_alloc(s, flags); } #endif #ifdef CONFIG_TRACING extern void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t) __assume_slab_alignment __malloc; #ifdef CONFIG_NUMA extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s, gfp_t gfpflags, int node, size_t size) __assume_slab_alignment __malloc; #else static __always_inline void * kmem_cache_alloc_node_trace(struct kmem_cache *s, gfp_t gfpflags, int node, size_t size) { return kmem_cache_alloc_trace(s, gfpflags, size); } #endif /* CONFIG_NUMA */ #else /* CONFIG_TRACING */ static __always_inline void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t flags, size_t size) { void *ret = kmem_cache_alloc(s, flags); ret = kasan_kmalloc(s, ret, size, flags); return ret; } static __always_inline void * kmem_cache_alloc_node_trace(struct kmem_cache *s, gfp_t gfpflags, int node, size_t size) { void *ret = kmem_cache_alloc_node(s, gfpflags, node); ret = kasan_kmalloc(s, ret, size, gfpflags); return ret; } #endif /* CONFIG_TRACING */ extern void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc; #ifdef CONFIG_TRACING extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc; #else static __always_inline void * kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) { return kmalloc_order(size, flags, order); } #endif static __always_inline void *kmalloc_large(size_t size, gfp_t flags) { unsigned int order = get_order(size); return kmalloc_order_trace(size, flags, order); } /** * kmalloc - allocate memory * @size: how many bytes of memory are required. * @flags: the type of memory to allocate. * * kmalloc is the normal method of allocating memory * for objects smaller than page size in the kernel. * * The allocated object address is aligned to at least ARCH_KMALLOC_MINALIGN * bytes. For @size of power of two bytes, the alignment is also guaranteed * to be at least to the size. * * The @flags argument may be one of the GFP flags defined at * include/linux/gfp.h and described at * :ref:`Documentation/core-api/mm-api.rst <mm-api-gfp-flags>` * * The recommended usage of the @flags is described at * :ref:`Documentation/core-api/memory-allocation.rst <memory-allocation>` * * Below is a brief outline of the most useful GFP flags * * %GFP_KERNEL * Allocate normal kernel ram. May sleep. * * %GFP_NOWAIT * Allocation will not sleep. * * %GFP_ATOMIC * Allocation will not sleep. May use emergency pools. * * %GFP_HIGHUSER * Allocate memory from high memory on behalf of user. * * Also it is possible to set different flags by OR'ing * in one or more of the following additional @flags: * * %__GFP_HIGH * This allocation has high priority and may use emergency pools. * * %__GFP_NOFAIL * Indicate that this allocation is in no way allowed to fail * (think twice before using). * * %__GFP_NORETRY * If memory is not immediately available, * then give up at once. * * %__GFP_NOWARN * If allocation fails, don't issue any warnings. * * %__GFP_RETRY_MAYFAIL * Try really hard to succeed the allocation but fail * eventually. */ static __always_inline void *kmalloc(size_t size, gfp_t flags) { if (__builtin_constant_p(size)) { #ifndef CONFIG_SLOB unsigned int index; #endif if (size > KMALLOC_MAX_CACHE_SIZE) return kmalloc_large(size, flags); #ifndef CONFIG_SLOB index = kmalloc_index(size); if (!index) return ZERO_SIZE_PTR; return kmem_cache_alloc_trace( kmalloc_caches[kmalloc_type(flags)][index], flags, size); #endif } return __kmalloc(size, flags); } /* * Determine size used for the nth kmalloc cache. * return size or 0 if a kmalloc cache for that * size does not exist */ static __always_inline unsigned int kmalloc_size(unsigned int n) { #ifndef CONFIG_SLOB if (n > 2) return 1U << n; if (n == 1 && KMALLOC_MIN_SIZE <= 32) return 96; if (n == 2 && KMALLOC_MIN_SIZE <= 64) return 192; #endif return 0; } static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node) { #ifndef CONFIG_SLOB if (__builtin_constant_p(size) && size <= KMALLOC_MAX_CACHE_SIZE) { unsigned int i = kmalloc_index(size); if (!i) return ZERO_SIZE_PTR; return kmem_cache_alloc_node_trace( kmalloc_caches[kmalloc_type(flags)][i], flags, node, size); } #endif return __kmalloc_node(size, flags, node); } int memcg_update_all_caches(int num_memcgs); /** * kmalloc_array - allocate memory for an array. * @n: number of elements. * @size: element size. * @flags: the type of memory to allocate (see kmalloc). */ static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags) { size_t bytes; if (unlikely(check_mul_overflow(n, size, &bytes))) return NULL; if (__builtin_constant_p(n) && __builtin_constant_p(size)) return kmalloc(bytes, flags); return __kmalloc(bytes, flags); } /** * kcalloc - allocate memory for an array. The memory is set to zero. * @n: number of elements. * @size: element size. * @flags: the type of memory to allocate (see kmalloc). */ static inline void *kcalloc(size_t n, size_t size, gfp_t flags) { return kmalloc_array(n, size, flags | __GFP_ZERO); } /* * kmalloc_track_caller is a special version of kmalloc that records the * calling function of the routine calling it for slab leak tracking instead * of just the calling function (confusing, eh?). * It's useful when the call to kmalloc comes from a widely-used standard * allocator where we care about the real place the memory allocation * request comes from. */ extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long); #define kmalloc_track_caller(size, flags) \ __kmalloc_track_caller(size, flags, _RET_IP_) static inline void *kmalloc_array_node(size_t n, size_t size, gfp_t flags, int node) { size_t bytes; if (unlikely(check_mul_overflow(n, size, &bytes))) return NULL; if (__builtin_constant_p(n) && __builtin_constant_p(size)) return kmalloc_node(bytes, flags, node); return __kmalloc_node(bytes, flags, node); } static inline void *kcalloc_node(size_t n, size_t size, gfp_t flags, int node) { return kmalloc_array_node(n, size, flags | __GFP_ZERO, node); } #ifdef CONFIG_NUMA extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long); #define kmalloc_node_track_caller(size, flags, node) \ __kmalloc_node_track_caller(size, flags, node, \ _RET_IP_) #else /* CONFIG_NUMA */ #define kmalloc_node_track_caller(size, flags, node) \ kmalloc_track_caller(size, flags) #endif /* CONFIG_NUMA */ /* * Shortcuts */ static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags) { return kmem_cache_alloc(k, flags | __GFP_ZERO); } /** * kzalloc - allocate memory. The memory is set to zero. * @size: how many bytes of memory are required. * @flags: the type of memory to allocate (see kmalloc). */ static inline void *kzalloc(size_t size, gfp_t flags) { return kmalloc(size, flags | __GFP_ZERO); } /** * kzalloc_node - allocate zeroed memory from a particular memory node. * @size: how many bytes of memory are required. * @flags: the type of memory to allocate (see kmalloc). * @node: memory node from which to allocate */ static inline void *kzalloc_node(size_t size, gfp_t flags, int node) { return kmalloc_node(size, flags | __GFP_ZERO, node); } unsigned int kmem_cache_size(struct kmem_cache *s); void __init kmem_cache_init_late(void); #if defined(CONFIG_SMP) && defined(CONFIG_SLAB) int slab_prepare_cpu(unsigned int cpu); int slab_dead_cpu(unsigned int cpu); #else #define slab_prepare_cpu NULL #define slab_dead_cpu NULL #endif #endif /* _LINUX_SLAB_H */
| ver. 1.4 |
Github
|
.
| PHP 7.4.3-4ubuntu2.24 | Генерация страницы: 0 |
proxy
|
phpinfo
|
Настройка